Max - Planck - Institut für Mathematik in den Naturwissenschaften Leipzig Ollivier ’ s Ricci curvature , local clustering and curvature
نویسندگان
چکیده
In Riemannian geometry, Ricci curvature controls how fast geodesics emanating from a common source are diverging on average, or equivalently, how fast the volume of distance balls grows as a function of the radius. Recently, such ideas have been extended to Markov processes and metric spaces. Employing a definition of generalized Ricci curvature proposed by Ollivier and applied in graph theory by Lin-Yau, we derive lower Ricci curvature bounds on graphs in terms of local clustering coefficients, that is, the relative proportion of connected neighbors among all the neighbors of a vertex. This translates the above Riemannian ideas into a combinatorial setting. We also study curvature dimension inequalities on graphs, building upon previous work of several authors.
منابع مشابه
Max - Planck - Institut für Mathematik in den Naturwissenschaften Leipzig Improved lower and upper bounds for entanglement of formation
متن کامل
Max - Planck - Institut für Mathematik in den Naturwissenschaften Leipzig Immunity space generated by a non trivial genetic - antigenic relation
متن کامل
Max - Planck - Institut für Mathematik in den Naturwissenschaften Leipzig Method for measuring the entanglement of formation for arbitrary - dimensional pure states
متن کامل
Discrepancy of Products of Hypergraphs
Discrepancy of Products of Hypergraphs Benjamin Doerr, Michael Gnewuch and Nils Hebbinghaus Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, D-66123 Saarbrücken, e-mail: [email protected] Max-Planck-Institut für Mathematik in den Naturwissenschaften, Inselstraße 22, D-04103 Leipzig, e-mail: [email protected] Institut für Informatik und Praktische Mathematik, Christian-Albrechts-Uni...
متن کامل